Correlation between microstructure and bioequivalence in Anti-HIV Drug Efavirenz

Silvia Lucia Cuffini
Universidade Federal de São Paulo
Efavirenz

- Crystalline solid
- Lipophilic
- BCS Class II
- Polimorph I is commonly used for drug formulation
- Oral bioavailability of 40 – 45%
- In the HAART - the best choice - treatment of adults and children

Figure 1. Chemical structure of EFV. (Adapted from SATEESHKUMAR et al., 2009).
Figure 2. (A) XRPD, DSC-TG and FT-IR of EFV polymorph 1. (B) SEM micrographs of EFV raw material batches 1 – 6.

<table>
<thead>
<tr>
<th>EFV raw material batch</th>
<th>Average particle size d[4, 3] (µm)</th>
<th>Average particle size d[3, 2] (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (bioequivalent)</td>
<td>2.6</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>4.4</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
<td>2.0</td>
</tr>
<tr>
<td>5 (non-bioequivalent)</td>
<td>4.0</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>8.8</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Figure 3. Particle size analysis of the six batches of EFV.
Bioequivalence and Dissolution Properties

Figure 4. A) Powder dissolution profile in SLS 0.25% versus time. B) Dissolution Efficiency of six EFV batches of raw materials. Batch 1 passed the bioequivalence test, whereas batch 5 did not.
Two bio-batches, 1 and 5, with the acceptable solid state characteristics and formulations for in vivo studies

Why?

Batch 1 bioequivalent
Batch 5 Non-bioequivalent
Microstructure in drugs

- **Raw material**

- **Particle Size / Morphology**
 - 5 – 30 µm

- **Microstructure**
 - 20 – 500 nm

- **Polymorphism**
 - Unit cell
 - 4 – 100 Å

- **Micronized particle**
 - 10^{-6} m

- **Crystalline domain**
 - $10^{-8} - 10^{-9}$ m

- **Atoms / Molecules**
 - 10^{-10} m
Figure 5. Crystalline microstructure representation (crystallite).
Results

Microstructure – X-Ray Diffraction Pattern

Figure 7. (A) Schematic definition of particle, cluster and crystalline domain (crystallite) size. (B) Example of the XRPD data analysis by the WPPM approach (EFV batch 5): data (circle), model (line) and their difference, or residual (line below).
Figure 6. Crystalline domain size distribution for the six EFV batches of this study.
Results

Dissolution Efficiency vs Particle Size Distribution

![Graphs showing dissolution efficiency vs average particle size for six batches of EFV raw materials. Batch 1 passed the bioequivalence test, whereas batch 5 did not.](image)

Figure 8. DE versus average particle size, and DE versus average crystalline domain size, for six batches of EFV raw materials. Batch 1 passed the bioequivalence test, whereas batch 5 did not. (A) DE versus average particle size $d[4, 3]$. (B) DE versus average particle size $d[3, 2]$.
Results

Dissolution Efficiency vs Crystalline Domain Size Distribution

Figure 9. DE versus average crystalline domain size $<D>$ (nm).
Results

Bioequivalence / Dissolution Properties \times Crystalline Domain and Particle Sizes

Figure 10. Synoptic 3D view of the relationship among average crystalline domain size, average particle size and dissolution efficiency.
Conclusion

1-Biorrelevance of Microstructure
 - Crystalline domains sizes (Microstructure)
 Batch 1 - 30 nm Bioequivalent
 Batch 5 - 208 nm Non – Bioequivalent

2-Solid State Quality Control Parameters (low soluble drugs)
 - Polymorphism
 - Particle size distribution and morphology
 - Crystalline domain size distribution (Microstructure)
Co-authors

Cinira Fandaruff, UFSC-Brazil
Marcos Antônio Segatto Silva, UFSC-Brazil
Danilo Cesar Galindo Bedor, UFPE-Brazil
Davi Pereira de Santana, UFPE-Brazil
Luca Reubbi, ELETTRA-Italy
Cristy Leonor Azanza Ricardo, Univ. of Trento-Italy
Paolo Scardi, Univ. of Trento-Italy
Helvécio Vinícius Antunes Rocha, Farmanguinos-Brazil
Acknowledgments